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The problem of a crack in an elastic plane stretched at infinity is 
examined, taking sufficiently detailed account of the action of the 
interatomic cohesion forces between the crack edges. With respect to 
the functions characterizing the opening of the crack, the problem is 
reduced to a non-linear singular integrodifferential equation containing 
two dimension parameters. It is shown by using asymptotic methods of 
regular and matched asymptotic expansions that this equation has to 
solutions besides the trivial one. They correspond to cracks with 
respect to a small and a large opening. Fracture criteria are obtained 
by using the condition of smooth closing of the crack edges. 

i. Let an infinite elastic body with a regular atomic lattice be loaded under plane 
strain conditions by uniform forces 
Hooke's law into account that 

(sy = const # 0, 0, = 0 . Then, it can be seen by taking 

By = 20E,, 0 = G (1 - Y)-' (1.i) 

where sy is the relative elongation in the direction of the y axis, and G and Y are elastic 
constants. Under the mentioned loading of the body the spacing between rows of atoms in the 
crystal lattice will somewhat exceed the normal interatomic spacing b in the direction of the 
y axis, namely it will equal b + 4byv i.e., it can be assumed that sy = Ab,lb. Furthermore, 
if the atomic series are separated, I.e., % is increased, then initially CT" will increase 
proportional to the law (l.l), then for sufficiently large sy the linear relation will 
become non-linear, uy will reach a certain maximum value op, the theoretical yield point, 
and then start to drop rapidly. Such a nature of the dependence of cy on sy is typical 
and corresponds to the Lennard-Jones, Morse, Massey, et al., interatomic interaction potentials 
and is shown in Fig.1. After reaching the value CQ, by the force u,,, it must be considered 
that the continuity of the body is no longer preserved. We note that the described dependence 
of u'y on ey will have the same qualitative nature even for amorphous bodies /l/. 

Taking (1.1) into account, the dependence shown in Fig.1 will 
be written as 

U" = 2&,g (Eyld) (1.2) 

bu 
$ -.-. 

h 

where the function g(r) will decrease monotonically from the value 

g (0) = 1 to the value g(m) = 0 not more slowly than I-a(a>2), 
as 2 increases, and the quantity d will correspond to the strain 

%I for which uy reaches the maximum value cp. This means that 
the following relationships hold: 

g (1) + g' (1) = 0, d = op [28g (i)]-’ = 6/b (1.3) 
d 

EY where 6 is that excess over the normal interatomic distance for 

Fig.1 which the interaction between rows of atoms will start to drop for 
Ab,> 6. We find, on the basis of (1.2), that the work needed to 
form a unit of free surface equals /l, 2/ 

(1.4) 

We will now consider the classical problem of the tension in a plane with a crack of 
length 2~ (plane strain) by uniform forces of intensity p applied at infinity (Fig.2). We 
introduce the opening of the crack r(z) = -2u(r,O)( 1 x 1 <a), where u(z,lJ) is the displacement 
of points of the lower face of the crack. If "we view in a microscope" the crack edge 5 = --a, 
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we will detect the separated rows of atoms (Fig.3). It must obviously be assumed that the 
crack starts where the spacing between the rows of atoms reaches a value of bS6 while 

the cohesive force.between the atoms starts to drop. Therefore, the force cy increases 
monotonically during motion along the plane of the crack between 5=--00 and x=-a, 
reaching the maximum value (Jp in the section 5=-a, and then as x increases further 
starts to decrease monotonically (Fig.3). This means that at the crack tips l'(+a)=O and 

0, (i_a,O) = up. The cohesive forces acting on the crack edges for /z 1 <a (Fig.21 must 
be considered to be external forces relative to the deformable medium and introduced into the 
boundary conditions. 

Thus, taking account of (1.2) and 11.31, the boundary conditions of the problem will 
have the form 

Y = 0, Gv = 0 (I x I < W)T v=o (Ix I>4 (1.5) 

a,=&(1 +(I+$) (Irl<a) 

where % = P at infinity. If the circumstance that the problem is physically non-linear 
in small zones near the crack tips by virtue of (1.2) is neglected, and the equations of 
linear elasticity theory are considered to hold everywhere in the elastic plane outside the 
crack, then by using the Fourier integral transform the problem of finding the solution of 
the Lame equations for mixed boundary Conditions (1.5) can be reduced to the following non- 
linear singular integrodifferential equations (IDE): 

The following dimensionless quantities and notation are introduced here 

I-*=+-, P*=$ x* E-5 
a’ h$j- 0 

We omit the asterisk in (1.6) and below. 

Fig.2 

We will use the eondition.of smooth closure of the crack edges at its apices /3f 

r’ f&f) = 0 0.7) 
to determine the critical value of the force p at which crack elongation will occur. 

2. The non-linear Eq.tl.6) under Conditions (1.7) and for any value of h has the trivial 
solution r = 0, p = 1 corresponding to the case of no crack opening and, consequently, 
fracture of the body on reaching the theoretical yield point. We will show that such a sol- 
ution is obtained in practice only for sufficiently large values of the parameter A. 

Inverting the singular operator on the left-hand side of (1.6) under the conditions 
r (*I) = r’ (fq = 0 we arrive at the IDE 

1 

r’(x) = ---&a-3 f f m & - 
_-l tit-p @--zf =Ar (1~1~kr(f4)=0) 
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Fig.3 

which is equivalent to (1.6) under the conditions 

Integrating (2.1) taking the conditions r(jl) = 0 into account, we find 

Now assuming that r‘ (5) EC1 t--1, I), we make the estimate 

1 
1 

II Ar IIc < nh max, IS if F (01 - f [r WI1 [r V) - r (41 & < 

_l [r (t) - r (.z)] 1/1-- (t-z) 

(2.3) 

(2.4) 

+ mm- If’ m I II r JIG 

Similarly we have 

It Br IIc < '/,sk--' maxr I f’ 07 i II f 11~~ 

Therefore, by virtue of (2.4) and (2.5) 

II Br lk, < h-1 (1 f %4 mm- If' m III ~IIc, 

(2.5) 

CW 

and the operator B is a compression operator in C,(-$,1) for sufficiently large h. In this 
case the solution of the integral Eq.(2.3) is unique in c, (-111) and can be obtained by 
successive approximations. However, one solution r =0 is known and it is therefore unique, 
hence we have p=l from Conditions (2.2). 

The further problem is to seek non-trivial solutions of (1.6) under the Conditions (1.7) 
for values of h such that 

a< (1 + '1,s) maxr If’ m I (2.7) 

It has been remarked /4/ that mathematical difficulties make a complete examination of 
(1.6) and (1.71 an extremely complex problem, but certain results can be obtained by asymptotic 
methods. 

3. We will study the case of cracks of relatively small opening. To do this, we set 

r = ?+I=, l-p=Ah2 (3.0 

in (1.61 and (1.71 and we seek the function f" (9 and the constant A in the form of the 
following regular expansions in powers of the small parameter h: 

I-0 (4 = r. (2) + ar, (5) + azr, (5) -i- 0 (aa) 
A = A, + L4, + h2A, +- O(P) 

(3.2) 
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Now substituting (3.1) into (1.61 and (1.7), using the smallness of A, and the first 

relationship in (1.31, we obtain, to terms of the order of hS, 

( 1 x I < 1, r” (fl) = r”’ (t_ 1) = 0) 

&A-*, c = g” (*I + ‘/3x” (‘f , 
% (‘1 

i) = gw w-b %P (1) 
6g 1’) 

(3.3) 

Taking account gf the properties described above for the function g (x) it can be 

shown that B>O. Furthermore substituting the expansion (3.2) into (3.3) and equating 
terms on the right and left for identical powers of the parameter h (up to hB inclusivel, 
we arrive at the following equations for the functions ri fx) (i = 0, 1, 2) 

dE = A,, - Bl?,*s(x) 
-1 

1 l r ‘(5) s L d& = A, - 2Br, (5) rl (x) j- crow (2) Ti- f-2 
-1 

(34 

(3.5) 

The approximate solution of the non-linear IDE (3.4) &an be found by the method of 
discrete vortices /51, say, in combination with a quasilinearization process /6/. The integro- 
differential Eqs.(3.5) and (3.6) are Prandtl equations. Their approximate solutions can be 
constructed by one of the methods described in 15, 7/. The constants Ai (i = 0, 1, 2) will 
be determined here from the conditions rj' (&l) = 0, equival.ent to the following relationships 
(compare with (2.2)): 

(3.7) 

Therefore, the asymptotic solution of Eqs.(l.6) and (1.7) for small h can actually be 
constructed in the form of (3.X) and (3.2). 
relationship of (3.1), 

We find the critical force p from the second 

4. We will study the case of cracks of relatively larege opening. To do this we use the 
notation UP = Ir and we set I“= pr, Then Eqs.(l.G), with the Condition (1.71, take the 
form 

1 “. ‘r’(E) 
7; s ----~“=~(I -+(I -+)-I 

_._1 &-z (4-l) 

( I 5 I G I, r (_fi) = r’ t-t-1) = 0) 

The supercript 1 is omitted from the r in (4.11 ana henceforth. 
reduce (4.1) to the IDE 

It is also possible to 

equivalent to (4.1) under the conditions 
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(4.3) 

Eqs.(4.2) and (4.3) are obviously analogous to (2.1) and (2.2). 
We will apply the method of matched asymptotic expansions /8, 9/ to the investigation of 

(4.1), (4.2) and (4.3) for small values of the parameter p. We have principally 

for determining the external (penetrating) solution 

r. (x) = v'l - z? 

in the zone of variation of X outside of small neighbourhoods of the points 2=+l, where 
r(x)- 1 from (4.1) for p<l by virtue of the properties of the function g(x). 

We will now examine and e-neighbourhood of the point x = -1 and we will extend it by 
introducing the new variable r = (x $ I)/E. The external solution (4.5) is of the order of 
&it on approaching the a-neighbourhood boundary, i.e., for r - 1. Consequently, we 
will seek the function r (2) in the form 

r (5) = &‘/*q (r) + 0 (c’/*)(r - 1) 

in the a-neighbourhood. Similarly, in the a-neighbourhood of the point x = 1 

r (5) = &‘/‘q (s) + 0 (Ey (s = (1 - s)/c N 1) 

Here !7 (r) is an internal solution or boundary layer. 
Substituting (4.6) and (4.7) into (4.2), we obtain in the neighbourhood of x = -1 

(4.6) 

(4.7) 

(4.8) 

The integral between --i-t-q and 1-q is small in (4.8) because the function 

f(r/p)%O(tP-l) for r _ 1 and EL< 1. Moreover, it is seen that the third integral in 
(4.8) can also be neglected compared with the first (because 8% 1). 

We set s'i. = p to ensure matching of the external and internal solutions. Eq.(4.8) for 

4 (r) here takes the final form 

The same equation is obtained if the a-neighbourhood of the point 5 = 1 is examined. 
By means of analogous reasoning the integral Condition (4.3) can be rewritten as follows: 

We hence find the critical force 

p = 1/2Jhln 

(4.10) 

(4.11) 

It is seen that it is determined principally by molecular interaction forces that appear 
in the s-neighbourhoods of the crack tips. 

5. Note that Condition (4.11) should obviously be exactly the same as the Griffith 
fracture condition {the energetic fracture condition) that has the form /2i [Zlp = 2f@/(ss) 
in dimensional quantities. Taking account of f1.3), (1.4) and (1.7) in the dimensionless 
quantities mentioned earlier, this relationship can be rewritten as 

p = 2 J/zwng (1)) (5.1) 
Comparing (4.11) with (5.1) we see that the relationship 

/ = 21/g (1) 
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should be satisfied, which imposes a constraint on the possible form of the function g fx) 
in the original dependence (1.2). Therefore, the fracture micromechanism described by (1.2) 
turns out to be associated with the fracture macromechanism (5.1). 

We will allow the function g(x) in (1.2) to be selected such that the relationship 
(5.2) is satisfied approximately, and we will consider the problem of constructing an approxi- 
mate solution of the non-linear IDE (4.9). For large values of the argument the function 

4 (r) should tend to the external solution, i.e., q (r) = 1/2;: (F--f 00) according to (4.5) 

and (4.6). At the same time q (0) = q’ (0) = 0 in the neighbourhood of zero. In accordance 

with this we will represent the approximate solution of (4.9) in the form 

q (r) = (2r)"i+2r + D)-l (5.3) 

where we select the constant D so that the relationship (5.2) is satisfied. Furthermore, 
taking (5.3) as the initial approximation for the solution of (4.91, its more exact solution 
can be found by the method of the discrete vortices /lo/ and then a new expression can be 
found for the constant J according to (4.10). If it differs substantially from the value 
(5.2) taken earlier for J, then the form of the function g(sll in (1.2) is inappropriate 
and must be corrected. Repeating this procedure several times, we finally find the form of 
the function g fs) (generally not unique) needed to satisfy relationship (5.2) and an approxi- 
mate solution of (4.9). Therefore, the asymptotic solution of (4.1) for small u in the form 
(4.5), (4.6) and (4.9) can actually be constructed. We then find the critical force p from 
Condition (4.11) and (5.1). 

We now examine the plane p, h-1,. where h-1 is the 
dimensionless length of the crack (Frg.4). We schematically 
display the results obtained in this plane. The continuous part 
of curve I corresponds to the solution p = 1 (i.e., fracture 

0. before reachinu the theoretical yield point) for cracks of / f 

/7---‘s- 
_ _ _ _.________~_ _ _ quite small relative length that-do not experience opening. 

- .c Between the points 0' and 0" of the axis h-1 is a domain of 
,&“_ i _ I- .- .:x2- 

/ n I 

% 

cracks of small relative length (h- 1) for which information 

; / ‘. 
; ’ 

about the values of the critical force p can be obtained only by 
; the direct numerical solution of (1.6) and (1.7). The solid part 

’ I ! 
11 ; 

of curve 2 corresponds to the second relationship in (3.1) fit 

)( , 
is taken into account that A,>O, while the next terms in 
expansion (3.2) for A jh) are small for small h). These are 

or' 0" A;' A-' cracks of medium relative length and relatively small opening. 
The solid part of curve 3 corresponds to relation (5.1). These 
are cracks of long relative length and relatively large opening. 

Fig.4 From the nature of the dependence (3.1) and (5.1) it is seen 
that curves 2 and 3 should intersect at a certain point h,-I. 
Therefore, cracks of medium relative length grow stably as the 

load acting on the body increases, but on reaching a certain critical length h,-' for a 
load p* less than the theoretical yield-point p=l they start to behave unstably according 
to the Griffith mechanism, like cracks of relative long length. The sections of the dependence 
p=l as well as 13.1) and (5.1) not realizable in actuality are shown by dashes in Fig.4. 
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